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Abstract

The application of the elliptic balance method to the solution of undamped, two degree of freedom homogeneous

nonlinear systems is described. This method uses Jacobian elliptic functions in the balance and is based on the concept of

averaging with respect to complete elliptic integrals of the first kind. To assess the accuracy of the approximate solution

thus obtained, we consider the motion of a linear vibration absorber attached to a rigid body that is supported

symmetrically by incompressible, homogeneous and isotropic hyperelastic shear blocks. It is shown that the

amplitude–time response of the model system is well predicted by the elliptic balance method solution even for relatively

large parameter values.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Many researchers have investigated various approximate solutions for homogeneous nonlinear, second
order, ordinary differential equations by use of perturbation methods involving elliptic functions [1–19]. The
methods include, for example, elliptic harmonic balance [5], elliptic Krylov–Bogoliubov averaging [1,7,10],
and certain other elliptic averaging procedures [9]. Of course, each of these diverse methods has its own
advantages and exhibits its own analytical complexities exposed in the aforementioned sampling of papers.
Most of these works are focused on only first-order approximate solutions of the perturbed elliptic function
variety. Nevertheless, it is generally acknowledged among experts that the accuracy of elliptic function
perturbation methods in the solution of such equations, particularly those of the perturbed Duffing oscillator
type, is greater than that based on parallel methods that use circular functions.

Specifically, Barkham and Soudack [1,2] were the first to use the elliptic function perturbation method as an
extension of the Krylov–Bogoliubov (K–B) averaging method [20] in which Jacobian elliptic functions are
used to approximate the solution for a perturbed Duffing oscillator equation. They find improved accuracy of
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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the solution phase for both weak and strong nonlinear homogeneous systems in comparison with the usual
Krylov–Bogoliubov method. The same approximation technique was extended in Refs. [3,4] to allow the
modulus of the Jacobian elliptic function to depend on time. This led to increased accuracy of the method for
certain perturbed Duffing type oscillators. The extension of the application of Jacobian elliptic function
methods to obtain approximate solutions of several classes of nonlinear problems, including certain wave
propagation problems, subsequently was studied by a number of other workers [5–27].

It is also well known that the homogeneous Duffing equation has an exact solution in terms of Jacobian
elliptic functions, whereas a coupled, two degree of freedom homogeneous system having cubic nonlinearities
of the Duffing type has no known exact solution. For corresponding coupled linear oscillators, on the other
hand, we recall that for each unknown function one adopts certain familiar sinusoidal solutions and then by
balance finds relations between the modal frequencies and amplitudes in reaching a closed form result.
Similarly, therefore, to obtain a solution of the more complex problem of coupled oscillators with cubic
nonlinearities, it is useful to consider a similar solution in terms of Jacobian elliptic functions. With this idea
and familiar balancing techniques for linear oscillators in mind, but now applied to Jacobian elliptic functions,
the method of elliptic balance is applied here in a perturbation process that ultimately involves averaging over
complete elliptic integrals. This elliptic balance method or procedure has been demonstrated on single degree
of freedom systems in several papers noted in the references. Furthermore, Elı́as-Zúñiga obtained the
approximate solution of a damped, nonlinear two degree of freedom system by using Jacobian elliptic
functions in conjunction with the method of averaging where the undetermined parameters of the proposed
solution were assumed to be slowly varying functions of time and for null initial velocity data [28]. Of course,
results for the undamped case are included as a special case when damping is absent. In this work, however, we
adopt a different approximation for which the parameters are independent of time and we consider general
initial data. The results are illustrated in the important, though somewhat easier problem of a linear vibration
absorber controlling the free, undamped motion of a load supported by nonlinear shear supports of the
Duffing type [29]. It is found that this method yields very accurate solutions, virtually indistinguishable from
the numerical solution of the system of equations. Needless to say, other perturbation techniques that use
multiple scales or the Krylov–Bogoliubov averaging method, among others, are useful, perhaps somewhat
simpler perturbation techniques, but these do not admit the exact solution for the homogeneous Duffing
equation as a special reduced case when either one of the oscillators is fixed and the other is released from rest,
for example. The elliptic balance method captures this special exact solution of the homogeneous Duffing type
oscillator. For additional comparison, however, we also exhibit approximate results based on the method of
multiple scales. Of course, the quality of comparison with different procedures often depends on the range of
values assigned to the various problem parameters, not all of which need be small. We find that the
amplitude–time response of the model system is nicely predicted by the elliptic balance method solution even
for relatively large parameter values.
2. Equations of motion

It is well-known that governing equations of motion with cubic nonlinearities arise in many physical systems
such as the vibrations of strings, beams, membranes, plates with significant stretching, dynamic vibration-
isolation systems, dynamic vibration absorbers, and so on, see, for example, Refs. [30,31]. The general motion
of these physical systems having cubic nonlinearities and negligible damping is governed by a system of two
homogeneous, ordinary differential equations, namely

€u1

€u2

( )
þ

o2
n1 0

0 o2
n2

( )
u1

u2

" #
¼ e

j1u3
1 þ j2u2

1u2 þ j3u1u2
2 þ j4u

3
2

j5u3
1 þ j6u2

1u2 þ j7u1u2
2 þ j8u

3
2

( )
, (1)

where a superposed dot denotes the derivative with respect to the time t, u1 and u2 are finite modal amplitudes,
on1 and on2 are natural frequencies of the system, e is a small, positive dimensionless parameter, and
j1; . . . ;j8 are certain parameters related to the physics of the system. We show that the elliptic balance
method developed here delivers a general approximate solution for physical systems characterized by
nonlinear equations of the canonical form shown in Eq. (1).
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2.1. The elliptic balance method

The approximate solution of Eq. (1), by use of the elliptic balance method is developed in terms of the
Jacobian elliptic functions cn, sn, and dn. The approximate solution will be obtained by following the same
idea used in the method of harmonic balance [30,32], but instead of balancing trigonometric functions, we now
balance Jacobian elliptic functions. This will require use of several identities recalled as the need arises.

To study the solution of the system described by Eq. (1) by application of Jacobian elliptic functions, we
shall assume the general approximate solution to be of the form

u1 ¼ a1cnðo1t; k
2
1Þ þ a3snðo3t; k

2
3Þ, (2)

u2 ¼ a2cnðo2t; k
2
2Þ þ a4snðo4t; k

2
4Þ, (3)

where oj ; kj , and aj are constants to be found. Note that we have assumed that the moduli kj of the Jacobian
elliptic functions as well as the frequencies oj are independent of time. For simplicity in the notation, let us
write the Jacobian elliptic functions in Eqs. (2) and (3) as cnj � cnðojt; k

2
j Þ, for j ¼ 1; 2; 3; 4. Similar notation is

defined for the functions snj and dnj. Substitution of Eqs. (2) and (3) into Eq. (1) and introduction of the well-
known relations [33]

sn2
j þ cn2

j ¼ 1; dn2
j þ k2

j sn2
j ¼ 1 (4)

yields
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in which

D1 � o2
n1 � o2

1ð1� 2k2
1Þ, (7)

D3 � o2
n2 � o2

3ð1� 2k2
3Þ (8)

and we recall that on1 and on2 are the natural frequencies of the system introduced in Eq. (1). We next apply
the averaging procedure proposed by Barkham and Soudack [1,2] to Eqs. (5) and (6) in turn. In this process,
the arguments in Eqs. (2) and (3), namely, Cj � ojt, are treated as independent variables.

Because the Jacobian elliptic functions cn and sn are of period 4Kðk2
Þ, we wish to average Eqs. (5) and (6)

over this period. Notice, however, that these equations depend on Jacobian elliptic functions whose moduli
are different. Therefore, we first compute the average of Eq. (5) with respect to 4K3, where Kj ¼ Kðk2

j Þ is
the complete elliptic integral of the first kind for the modulus kj. Notice that the corresponding average value
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of cn, sn , cn3, and sn3 is zero [33]. Thus, with Eq. (2) and Eq. (3) in mind, Eq. (5) becomes:
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where, from Ref. [33]
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1
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0

cn2
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1
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j
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Ej

Kj

� �
, (10)

in which Ej is the complete elliptic integral of the second kind for the modulus kj, and, as noted above

Cj � ojt. (11)

The solution of Eq. (9) is not known; therefore, we will attempt to simplify it by computing its average with
respect to 4K4, this yields:
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To further simplify the solution of Eq. (12), we may compute its the average with respect to 4K2 to obtain
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We then average this result with respect to 4K1 to obtain
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Note that the resulting Eqs. (13) and (14) hold for all time t if and only if

D1 ¼ 3ej1a
2
2ð1� I2Þ þ ej3a2

4ð1� I4Þ þ ej3a
2
3I3, (15)

k2
1 ¼ �

ej1a2
1

2o2
1

, (16)

o2
n1 ¼ o2

2ð1þ k2
2Þ þ 3ej1a

2
1I1 þ ej3a

2
3I3 þ ej3a2

4ð1� I4Þ, (17)

k2
2 ¼

ej1a
2
2

2o2
2
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Following the same procedure as in Eq. (5), we now compute the average of Eq. (6) with respect to 4K1, and
then use this equation and compute its average with respect to 4K2. This yields
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Eq. (19) can be simplified if we compute its average with respect to 4K4
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Finally, we find the average of this result with respect to 4K3 to reach
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Eqs. (20) and (21) hold for all time t if and only if

D3 ¼ ej6a2
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2
4ð1� I4Þ, (22)
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4
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Use of Eqs. (7), (8), and the equations that define k2
j , Eqs. (15), (17), (22), and (24) deliver the following exact

relations for o2
j :
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n1 � ea2
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2
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2
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2
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Eqs. (16), (18), (23), (25), and (26)–(29) provide a system of eight equations for the parameters oj and kj.
The constants a1; a2; a3, and a4 may be evaluated from the assigned initial conditions that are assumed to

be given by the general relations

u1ð0Þ ¼ u10; u2ð0Þ ¼ u20; _u1ð0Þ ¼ _u10; _u2ð0Þ ¼ _u20. (30)

Thus, the approximate solution of Eqs. (1) by the EBM is given by the following relations:

u1 ¼ u10cnðo1t; k
2
1Þ þ

_u10

o2
snðo2t; k

2
2Þ, (31)

u2 ¼ u20cnðo3t; k
2
3Þ þ

_u20

o4
snðo4t; k

2
4Þ. (32)

It is interesting to note that when u2 � 0 and the load is released from rest, Eq. (1) reduces to the well-known
undamped, Duffing equation whose exact solution is then given by Eq. (31) for appropriate values of o1, and
k1; and similarly for u2.

Since we have assumed that e is a small, positive dimensionless parameter, we may derive explicit
approximate expressions for oj and k2

j . Utilizing the series expansion for Ejðk
2
j Þ and Kjðk

2
j Þ and noting that

jk2
j jo1, we then see that Eq. (10) may be written as
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2048
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to an adequate degree of accuracy. Hence, use of Eq. (33) in Eqs. (26)–(29) yields explicit expressions for oj as
functions of kj; namely,
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ARTICLE IN PRESS
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o2
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4

2
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Finally, substitution of Eqs. (16), (18), (23), and (25) in Eqs. (34)–(37) and neglecting terms of order e2 or
higher, yields

o2
1 ¼ o2

n1 � ej1 a2
1 þ

3

2
a2
2

� �
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2
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2
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Use of Eqs. (38)–(41) in Eqs. (16), (18), (23), and (25) provides the moduli. To the first order in e, we have

k2
1 ¼ �

ej1a2
1

2o2
n1

; k2
2 ¼
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2

2o2
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3
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4

2o2
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If for the initial conditions assigned earlier _u1ð0Þ ¼ 0 and _u2ð0Þ ¼ 0, then the system modal solution is still
given by Eqs. (31) and (32) in which

o2
1 ¼ o2

n1 � e u2
10j1 þ

u2
20j3

2

� �
, (43)

o2
3 ¼ o2
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2
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10ej1

2o2
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3 ¼
�u2

20ej8

2o2
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In this case, the periods T1 and T3 in t for the two modes of oscillation u1 and u2 are given by the exact
relations

T1 ¼
4Kðk2

1Þ

o1
, (47)

T3 ¼
4Kðk2

3Þ

o3
. (48)

Using Eqs. (43)–(46), and expanding Kðk2
j Þ in powers of k2

j to the first order in e, we obtain
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8
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1

4
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, (49)
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T3 ¼
2p
o3

n2

o2
n2 þ e

3

8
u2
20j8 þ

1

4
u2
10j6

� �� �
. (50)

The typical dependance of the periods on the amplitudes of the oscillations is evident here.

2.2. Results

To assess the accuracy of the approximate solution of Eqs. (1) obtained by the EBM, we consider the
familiar example [28,29] of motion of a linear undamped vibration absorber of stiffness k and mass m attached
to a rigid load of mass M supported symmetrically by incompressible, homogeneous and isotropic hyperelastic
shear mountings of original length L and cross-sectional area A as shown in Fig. 1. Shear mountings are used
widely for engine mountings, bridge and building supports, chassis steel leaf spring suspension, and various
kinds of packaging supports, see, for example Ref. [34]. To model these diverse kinds of applications, we
consider shear blocks bonded to the load at one face and to parallel rigid supports at the other, as illustrated in
Fig. 1. For simplicity, we suppose that both bodies are supported on a smooth horizontal bearing surface and
parallel to the plane of shear. Inertia of the shear and absorber springs will be neglected, as usual, and effects
due to symmetrical bending of the shear mounts will be ignored. We thus suppose that each shear block
executes an ideal isochoric, time-dependent simple shear deformation of amount sðtÞ ¼ tan aðtÞ from its initial,
undeformed state. Practical applications usually limit the maximum value of the angular deflection aðtÞ to 45�

[35]. For shear mounting materials whose shear response function is quadratic, namely, mðsÞ ¼ m0 þ 2m1s
2 ¼

m0ð1þ es2Þ where m0 represents the shear modulus of the shear mount material in the natural state, m1
represents the magnitude of the second-order modulus such that m15m0, and thus e � 2m1=m051. The details
and derivation of the equations of motion for this hyperelastic spring–mass system are provided in Ref. [29]
wherein the dimensionless governing equations of motion for this system are given by

€sþ s� a22z ¼ eb1s3, (51)

b€zþ a22z� a22s ¼ 0, (52)

where, in terms of the aformentioned physical parameters,

p2 �
k

m
; P2 �

k

M
¼ bp2; b �

m

M
; O2

0 � P2 þ O2
1, (53)
y

Load
Shear

Block
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m

m
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Fig. 1. Simple shear spring–mass and absorber system.
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A. Elı́as-Zúñiga, M.F. Beatty / Journal of Sound and Vibration 304 (2007) 175–185182
a22 �
P2

O2
0

; O2
1 �

2A

ML
m0; r2 �

p

O1
; b1 � a22 � 1. (54)

In accordance definitions given in Fig. 1, the dimensionless variables s � x=L and z � z2=L characterize,
respectively, the motion of the load M and of the linear absorber system from their natural states; b is the mass
ratio; e is a small dimensionless material parameter mentioned earlier, so that 0oe51; and O1 and p represent,
respectively, the natural frequency of the main system and of the secondary, absorber system.

We now introduce the linear transformation

s

z

� �
¼

R1 R2

R1f 1 R2f 2

( )
u1

u2

" #
, (55)

to obtain the canonical, normal mode form of the system of Eqs. (51) and (52), which is the same as Eqs. (1),
see Ref. [28]. Note that the physical parameters of the system corresponding to Eqs. (1) are given by

j1 � b1R4
1; j2 � 3b1R

3
1R2; j3 � 3b1R2

1R2
2; j4 � b1R1R3

2, (56)

j5 � b1R
3
1R2; j6 � 3b1R

2
1R

2
2; j7 � 3b1R1R3

2; j8 � b1R4
2, (57)

R2
1 ¼

1

ð1þ f 2
1bÞ

; R2
2 ¼

1

ð1þ f 2
2bÞ

; f 1 ¼
a22

1� bo2
n1

; f 2 ¼
a22

1� bo2
n2

, (58)

and the characteristic values or eigenvalues o2
nj that describe the natural mode frequencies of the system are

provided by

o2
n1 ¼

1

2

a22
b
þ 1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22
b
þ 1

� �2

þ
4

b
a22b1

s2
4

3
5, (59)

o2
n2 ¼

1

2

a22
b
þ 1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22
b
þ 1

� �2

þ
4

b
a22b1

s2
4

3
5. (60)

Thus, the approximate analytical EBM solution of the system of Eqs. (51) and (52) is provided by Eqs. (31),
(32), and (43)–(46).

We next proceed with the numerical comparison of our elliptic balance method approximate solution with
the multiple scales method solution derived by Nayfeh and Mook in [31] and with the numerical integration
solution of Eqs. (1) obtained by applying the fourth–order Runge–Kutta method provided by the
Mathematica symbolic package. The comparison has been made for a few cases shown graphically in
Figs. 2–5 where the light solid line represents the numerical integration solution, the unfilled squares represent
the multiple scales solution, and the dashed line represents our elliptic balance method approximate solution.
The amplitude–time response curves for values of b ¼ 0:1; e ¼ 0:02; r2 ¼ 1:05, a large initial shear deflection
sð0Þ ¼ 1 (i.e. a ¼ 45�), zð0Þ ¼ 0, _sð0Þ ¼ 0, and _zð0Þ ¼ 0, are shown in Fig. 2 for a reasonably large time tp100,
for illustration. It appears from Fig. 2 that all three solutions for this case are indistinguishable. The same
conclusion may be drawn from results shown in Fig. 3 for moderate values of b ¼ 0:2; e ¼ 0:2; r2 ¼ 1:05,
sð0Þ ¼ 1, zð0Þ ¼ 0, _sð0Þ ¼ 0, and _zð0Þ ¼ 1. In Fig. 4 are shown the amplitude–time response curves for a large
value of b ¼ 0:5, a moderate value of e ¼ 0:25, and for r2 ¼ 1:05,sð0Þ ¼ 1, zð0Þ ¼ 1, _sð0Þ ¼ 0, and _zð0Þ ¼ 0.
Again, the numerical integration, the multiple scales and elliptic balance method approximate solutions are
virtually the same. However, it is seen in Fig. 5 that for unrealistically large initial conditions sð0Þ ¼ 2 (about
63�), zð0Þ ¼ 0, _sð0Þ ¼ 0, and _zð0Þ ¼ 0, there is a clear variation between the numerical integration, the multiple
scales and elliptic balance method approximate solutions. In all practical cases and for the time interval
shown, the accuracy of the elliptic balance method is evident and it appears to be closely related to the initial
conditions and to the system parameter values as remarked earlier. Moreover, it is important to mention that
the accuracy of our elliptic balance method approximate solution is expected to deteriorate after the
dimensionless time t progresses, a condition that is typical of averaging procedures [20].
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Fig. 2. Amplitude–time response curves for values of b ¼ 0:1; e ¼ 0:02, r2 ¼ 1:05, sð0Þ ¼ 1, zð0Þ ¼ 0, _sð0Þ ¼ 0, and _zð0Þ ¼ 0. The light solid

lines represent the numerical integration solution, the unfilled squares represent the multiple scales solution and the dashed lines represent

the elliptic balance method solution for sðtÞ and zðtÞ.

Fig. 3. Amplitude–time response curves for values of b ¼ 0:2; e ¼ 0:2, r2 ¼ 1:05, sð0Þ ¼ 1, zð0Þ ¼ 0, _sð0Þ ¼ 0, and _zð0Þ ¼ 1. The light solid

lines represent the numerical integration solution, the unfilled squares represent the multiple scales solution and the dashed lines represent

the elliptic balance method solution for sðtÞ and zðtÞ.

Fig. 4. Amplitude–time response curves for values of b ¼ 0:5; e ¼ 0:25, r2 ¼ 1:05, sð0Þ ¼ 1, zð0Þ ¼ 1, _sð0Þ ¼ 0, and _zð0Þ ¼ 0. The light solid

lines represent the numerical integration solution, the unfilled squares represent the multiple scales solution and the dashed lines represent

the elliptic balance method solution for sðtÞ and zðtÞ.
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Fig. 5. Amplitude–time response curves for values of b ¼ 0:33; e ¼ 0:2, r2 ¼ 1, sð0Þ ¼ 2, zð0Þ ¼ 0, _sð0Þ ¼ 0, and _zð0Þ ¼ 0. The light solid

lines represent the numerical integration solution, the unfilled squares represent the multiple scales solution and the dashed lines represent

the elliptic balance method solution for sðtÞ and zðtÞ.
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3. Conclusions

This paper shows how the elliptic balance method may be applied to obtain the approximate solution of
undamped, nonlinear multi-degree of freedom systems by assuming modal solutions whose undetermined
parameters are time independent. It appears that the elliptic balance method, because of its general
formulation and its high degree of accuracy, has considerable potential for applications that are described by
Eq. (1). The accuracy can be improved by an appropriate choice of the parameter values and by supposing
that the modulus of the Jacobian elliptic functions are time dependent, a complexity avoided in the foregoing
analysis. Moreover, the elliptic balance method admits the exact solution for the homogeneous Duffing
equation as a special reduced case when either one of the oscillators is fixed and the other is released from rest,
something that is not possible by using multiple scales or other perturbation techniques. At present, we have
also obtained, by our proposed elliptic balance method, the solution for two degree of freedom systems having
cubic nonlinearities with a driving force of sinusoidal type. This work will be discussed elsewhere.
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